Educação
Qual é o tamanho de um ponto?
Observe a imagem acima. Parece, sob o olhar desatento, retratar um robô de braços abertos cuja sombra é projetada sobre o solo que pisa e uma parede logo adiante. No entanto, se observar atentamente, o que parece chão e parede (formando um ângulo reto em perspectiva) é, na verdade, um único plano. A ilusão de profundidade é dada por uma sombra fisicamente impossível. Além disso, a frase "My shadow tickles me" (Minha sombra me faz cócegas) reforça uma confusão sobre ponto de vista. De fato, a sombra do braço esquerdo está sob a axila direita, justificando a brincadeira de estar fazendo cócegas. Porém, essa visão é virtualmente impossível do ponto de vista do robô. Portanto, a sombra faz cócegas em quem?
Esta imagem foi feita para ilustrar como é fácil criar ilusões com imagens. O verdadeiro mestre de ilusões, no entanto, foi o grande artista gráfico holandês Maurits Cornelis Escher, o qual concebeu inúmeras gravuras intimamente associáveis aos célebres Triângulo de Penrose e Escada de Penrose.
Desperto atenção para isso com o objetivo de destacar a diferença fundamental entre desenho e geometria. Em nossas terras até hoje se promove uma gigantesca confusão entre essas duas áreas da cultura mundial. É muito comum professores de matemática lecionarem geometria com o auxílio de réguas, compassos e transferidores. Réguas, compassos e transferidores são ferramentas úteis para o ensino de desenho, mas não de geometria. Pelo contrário, depender de instrumentos de desenho para aprender geometria é certamente um disparate.
Quando Euclides de Alexandria escreveu o monumental Elementos (sem dúvida a obra científica mais bem sucedida da história), sua visão de geometria foi interpretada durante dois mil anos como um compromisso matemático com as intuições humanas a respeito de espaço físico.
Quando o matemático russo Nicolai Lobachevsky provou a independência do célebre quinto postulado de Euclides, introduzindo aquilo que hoje conhecemos como as geometrias não euclidianas, esse compromisso entre geometria e intuição sobre espaço físico foi severamente ameaçado. Lobachevsky percebeu que a geometria euclidiana era apenas uma, entre infinitas geometrias possíveis.
Mas foi em 1899 que a geometria euclidiana atingiu seu primeiro grande amadurecimento depois de dois milênios de história. Foi neste ano que o alemão David Hilbert (o último matemático de visão genuinamente universal) publicou seu célebre Grundlagen der Geometrie, um livro no qual a geometria se reduzia a uma estrutura axiomática em que conceitos como ponto, reta e plano têm um status meramente linguístico.
Felizmente no Brasil existe pelo menos um livro de matemática originalmente escrito em português e, ao mesmo tempo, excelente. É a obra Fundamentos da Geometria, de Benedito Castrucci (LTC, 1978). Neste livro a geometria euclidiana é desenvolvida de tal forma que possa ser fundamentada, com todo o rigor, em qualquer das teorias de conjuntos usuais, como ZF e NBG.
No primeiro capítulo do livro de Castrucci, fortemente inspirado na obra original de Hilbert, um plano de incidência é definido como um par ordenado de dois conjuntos, a saber, um conjunto de pontos e um conjunto de retas. Pontos e retas nada mais são do que conjuntos. Ponto!
A versão original de Elementos, de Euclides, foi perdida. Resultado da ignorância dos cristãos que, em nome de Deus, incendiaram a Biblioteca de Alexandria e atrasaram o desenvolvimento científico da civilização durante séculos. O que se sabe hoje deste livro é por conta de traduções da obra para o latim e outros idiomas, bem como cópias de fragmentos em grego arcaico. Nas traduções que se popularizaram há uma suposta definição para ponto. Historiadores não têm certeza se essa definição é originalmente devida a Euclides ou se é uma contribuição de tradutores, com a finalidade de facilitar a compreensão. O fato é que a alegada definição apela para a noção intuitiva de que pontos não têm tamanho. E até hoje, em nossas escolas, se corrompe a mente de alunos com afirmações do seguinte tipo: "Ponto não tem largura, nem altura, nem profundidade". Ora, o administrador deste blog não tem escamas e nem tentáculos. No entanto, essa afirmação não pode ser considerada como algo que efetivamente defina quem sou eu.
Nos moldes do que a geometria euclidiana é hoje, não faz sentido perguntar qual é o tamanho de um ponto. É como perguntar qual é a cor da mulher. Mulher? Qual mulher?
Pontos, retas, planos e espaço são conceitos abstratos, usualmente fundamentados em teorias de conjuntos. E conjuntos são definidos única e exclusivamente pelos seus elementos (em ZF e NBG isso fica caracterizado pelo Axioma da Extensionalidade). Não há, nas teorias conjuntistas usuais, conceitos como os de tamanho, escamas ou tentáculos.
Portanto, se o professor de ensinos fundamental e médio deseja lecionar geometria, deve parar de uma vez por todas de seguir a literatura medíocre que assola este país. Se não consegue ler alemão (para ter acesso à obra de Hilbert), que pelo menos conheça bem o livro de Castrucci. Isso significa que deve conhecer detalhadamente pelo menos a teoria intuitiva de conjuntos. Feito isso, o próximo passo é a transposição de conhecimentos. A sofisticada linguagem usada hoje em dia para fundamentar a geometria deve ser adaptada para os limites intelectuais dos alunos.
Lecionar matemática para os ensinos fundamental e médio é uma tarefa extremamente complexa. Demanda conhecimentos profundos de matemática e treinamentos igualmente profundos em didática.
Se professores tanto anseiam pela valorização de suas carreiras, que façam justiça sobre suas reivindicações. Comecem a estudar.
loading...
-
Mais Um Exemplo Insano De Ensino A Distância
Recentemente recebi um e-mail, de um colaborador de pesquisa, sobre o site Descomplica. Trata-se de uma iniciativa de ensino a distância, cuja meta é preparar pessoas para o Exame Nacional do Ensino Médio (ENEM) e vestibulares. A proposta é "Descomplicar...
-
Apenas Alguns Livros - Parte Iii
Esta é a terceira (e, provavelmente, a última) parte de uma lista de recomendações bibliográficas em matemática, física teórica e filosofia da ciência iniciada em março de 2013. Para acessar a lista completa com todas as postagens de recomendações...
-
O Discurso Matemático: Uma Proposta De Pesquisa
Nesta postagem apresento uma proposta de pesquisa que se mostra relevante tanto para matemáticos e lógicos quanto para filósofos da ciência e educadores da matemática. Matemáticos profissionais quase sempre empregam dois tipos de linguagens radicalmente...
-
A Matemática Necessária Para Compreender Física
Frequentemente jovens perguntam o quão profundamente devem estudar matemática para compreender física teórica. Honestamente, nunca gostei desta pergunta. Isso porque implicitamente ela encerra a noção de que há um limite de conhecimento matemático...
-
Como Aprender Matemática
Aulas e livros de matemática frequentemente provocam reações negativas em alunos: sono, cansaço, desânimo, desorientação, ansiedade e até desespero. Este texto apresenta algumas noções básicas que, se forem seguidas, podem colaborar significativamente...
Educação